
www.manaraa.com

Improving the Performance of Reliable TransportProtocols in Mobile Computing Environments�Ram�on C�aceres Liviu IftodeAT&T Bell Laboratories Princeton University101 Crawfords Corner Road Department of Computer ScienceHolmdel, NJ 07733, USA Princeton, NJ 08544, USAramon@research.att.com liv@cs.princeton.educ
1994 IEEE, to appear in JSAC, special issue on Mobile Computing NetworksAbstractWe explore the performance of reliable data communication in mobile computing en-vironments. Motion across wireless cell boundaries causes increased delays and packetlosses while the network learns how to route data to a host's new location. Reliable trans-port protocols like TCP interpret these delays and losses as signs of network congestion.They consequently throttle their transmissions, further degrading performance. We quan-tify this degradation through measurements of protocol behavior in a wireless networkingtestbed. We show how current TCP implementations introduce unacceptably long pausesin communication during cellular hando�s (800 milliseconds and longer), and propose anend-to-end fast retransmission scheme that can reduce these pauses to levels more suit-able for human interaction (200 milliseconds). Our work makes clear the need for reliabletransport protocols to di�erentiate between motion-related and congestion-related packetlosses, and suggests how to adapt these protocols to perform better in mobile computingenvironments.1 IntroductionReliable transport protocols have been tuned for networks composed of wired links and sta-tionary hosts. They adapt to prevailing end-to-end delay conditions throughout the life ofa connection, and interpret unexpected increases in delay as packet losses caused by conges-tion. In response to perceived losses, protocols like the Transmission Control Protocol (TCP)[3] aggressively slow their transmissions to allow the network to recover. These congestioncontrol policies have proven bene�cial in improving the overall performance of networks likethe Internet. The premise underlying these policies, that packet losses are largely due tocongestion, is correct for existing networks.�This work was performed at Matsushita Information Technology Laboratory.1

www.manaraa.com

Future networks, however, will include wireless links and mobile hosts. In particular,there will be local-area networks composed of wireless cells of only a few meters in diameter.Such picocellular networks are desirable for three important reasons: they o�er high aggre-gate bandwidth, they require low power from mobile transceivers, and they provide accuratelocation information. Users in picocellular environments will often carry hosts across cellboundaries without warning and in the midst of data transfers.Transport-level connections will thus encounter types of delay and loss that are unrelatedto congestion. First, communication may pause while the hando� between cells completesand packets can again be routed to and from the mobile host. Second, packets may be lostdue to futile transmissions over the wireless network when a mobile host moves out of reachof other transceivers, especially in networks with little or no overlap between cells. Third,packets may be lost due to the relatively frequent transmission errors su�ered by wirelesslinks. Some performance degradation due to these delays and losses is unavoidable.These events also trigger congestion control procedures that further degrade performance.In particular, TCP implementations continually measure how long acknowledgments taketo return. They maintain a running average of this delay and an estimate of the expecteddeviation in delay from the average. If the current delay is longer than the average by morethan twice the expected deviation, TCP assumes that the packet was lost. In response, TCPretransmits the lost packet and initiates congestion control procedures to give the network achance to recover [8]. First, TCP drops the transmission window size to reduce the amount ofdata in transit through the network. Second, it activates the slow-start algorithm to restrictthe rate at which the window grows to previous levels. Third, it resets the retransmissiontimer to a backo� interval that doubles with each consecutive timeout.When motion is mistaken for congestion, these procedures result in signi�cant reductionsin throughput and unacceptable interactive delays for active connections. The degradation isreadily apparent, for example, to users of emerging ubiquitous computing environments [4].This paper quanti�es the e�ects of motion on throughput and delay, identi�es the factorsthat contribute to the loss of performance, and suggests an end-to-end approach for allevi-ating the problem. It shows how waits for TCP's retransmission timeouts cause pauses incommunication that last 0.8 seconds and longer after each cell crossing. Other researchershave called attention to the long pauses caused by TCP's exponential backo� policy [2, 7, 9],but to our knowledge this is the �rst systematic treatment of this problem. This paper alsodescribes how using TCP's fast retransmission procedure can reduce these pauses to 0.2 sec-onds. We focus on TCP because it is the most widely used reliable transport protocol andwill be used in at least the �rst generation of mobile computing environments. Furthermore,lessons learned from TCP apply to other reliable transport protocols that must deal withboth mobility and congestion.The remainder of this paper is organized as follows. Section 2 describes the wirelessnetworking testbed used to obtain our results. Section 3 presents the measured e�ects of hostmotion on the performance of reliable transport protocols. Section 4 proposes and evaluatesan end-to-end approach to alleviating the negative e�ects of motion. Section 5 discusseswireless transmission errors as an area for future work, and Section 6 concludes the paper.2

www.manaraa.com

2 Wireless networking testbedWe explore the e�ects of mobility through measurements of transport protocol behavior ina wireless networking testbed. The testbed consists of mobile hosts (MH), mobility supportstations (MSS), and stationary hosts (SH) deployed in an ordinary o�ce environment. Mobilehosts connect to a 2-Mbit/second WaveLAN local-area wireless network. WaveLAN is adirect-sequence spread spectrum radio product from NCR. Stationary hosts connect to a 10-Mbit/second Ethernet local-area wired network. Mobility support stations connect to bothnetworks. Figure 1 shows the minimum testbed con�guration.
MH

SH

MSS 1 MSS 2

cell 1 cell 2Figure 1: Wireless networking testbedAll hosts and support stations are equipped with 50-MHz i486 processors, 330-Mbytehard disks, 16 Mbytes of memory, and the necessary network interface hardware. They runthe 4.3BSD-Tahoe version of TCP from the University of California at Berkeley, MobileIP software from Columbia University [7], and the Mach 3.0 microkernel and Unix server(MK77/UX37) from Carnegie Mellon University [1]. 4.3BSD-Tahoe TCP is widely usedthroughout the Internet and implements exponential retransmission backo�s and the slow-start algorithm.2.1 Cellular hando� proceduresEach MSS de�nes one cell and is responsible for the MHs in its cell. It acts as the defaultgateway for those MHs, routing packets that originate in an MH from the wireless to thewired part of the network. Similarly, it forwards packets destined to an MH from the wiredto the wireless part of the network.MHs and MSSs collaborate to perform hando�s between cells. MSSs make their presenceknown by broadcasting periodic beacons over the wireless network. An MH decides to switchcells when it receives a beacon from a new MSS with a stronger wireless signal than thebeacon from the old MSS, or when it receives the �rst beacon from a new MSS after failingto receive beacons from the old MSS.To switch cells the MH sends a greeting packet to the new MSS, and changes its ownrouting tables to make the new MSS its default gateway. It also noti�es the new MSS ofthe identity of the old MSS. The new MSS acknowledges the greeting to the MH, adds theMH to the list of MHs for which the new MSS is responsible, and begins to route the MH's3

www.manaraa.com

packets accordingly. The new MSS also informs the old MSS that the host has moved andcan be reached through the new MSS. The old MSS then adjusts its routing tables in order toforward to the new MSS any packets that arrive for the MH, and acknowledges the hando�to the new MSS. Finally, the new MSS acknowledges the completion of the hando� to theMH. Further details of this protocol are found in [7].2.2 MethodologyIn our experiments, we initiate a reliable data transfer over a TCP connection between anMH and an SH, we cause the MH to cross cell boundaries while the connection is active, andwe measure the performance of the connection.We simulate motion across cell boundaries in software. The MH in our testbed is alwaysin range of both MSSs, but we modi�ed the Mobile IP software on the MH to ignore beaconsfrom all but one MSS. After the MH spends a speci�ed number of beaconing periods in thatMSS's cell, the modi�ed software listens for a beacon from the other MSS in order to initiatehando� procedures with the new MSS.An important bene�t of simulating motion in software is that it lets us study networkswith overlapping cells as well as networks with non-overlapping cells. When adjacent cellsoverlap and an MH is in the region of overlap, packets can continue to
ow between the MHand the old MSS while the hando� to the new MSS is in progress. When cells do not overlap,there is an unavoidable pause in network-level communication while the MH is out of reachfrom the old MSS and the hando� to the new MSS has not yet completed. The testbed allowsus to explore the full range of hando� scenarios, from the case when the MH is in contactwith both MSSs throughout the hando�, to the case when the MH cannot communicate withany MSS for an arbitrary interval of time after it leaves the old cell.Another bene�t of simulating motion in software is that it gives us precise control over theinstant when hando�s begin. Under normal circumstances, hando�s begin at indeterminatetimes based on the time remaining in a cell's beaconing period when a host enters the cell, oron the relative strengths of two wireless signals. Our testbed makes this process deterministicand therefore allows us to reliably reproduce test conditions. Finally, simulating motion insoftware eliminates the need to physically move test equipment during experiments.3 The e�ects of motionWe ran a number of experiments in the manner described above. We found that throughputdropped signi�cantly in the presence of motion. We then analyzed the problem in more detailto determine the causes of the performance loss. We tracked the TCP sequence number andwindow size over the lifetime of a connection to determine how TCP behaved during hando�s.We also traced TCP and Mobile IP packets during the course of each hando� to determine ifany packets were lost and why. This section presents our results.Due to space limitations, we only present results for the case where data packets
ow fromthe MH to the SH and acknowledgment packets
ow from the SH to the MH. However, we4

www.manaraa.com

also ran our experiments for the opposite case, with very similar results. We summarize ourresults for both cases in Section 4.4.
1600

(Kbit / sec)

Average

1510

1400

1100

OverlappingNo 0 - second

throughput

88 %

69 %

94 %
100 %

handoffs cells rendezvous delay
1 - second

rendezvous delay

Non- overlapping cellsFigure 2: Loss of throughput due to host motion3.1 Loss of throughputFigure 2 shows the average application-level throughput achieved when transferring 4 Mbytesof data between an MH and an SH. From left to right, the vertical bars represent the through-put obtained under four scenarios:� The MH does not move.� The MH moves between overlapping cells.� The MH moves between non-overlapping cells and receives a beacon from the new MSSat the instant it leaves the old cell (0-second rendezvous delay).� The MH moves between non-overlapping cells and receives a beacon from the new MSSone second after leaving the old cell (1-second rendezvous delay).In the scenarios that involve motion, the beaconing period is 1 second and the MH switchescells every 8 beaconing periods. These parameters were chosen to allow TCP connectionsto attain maximum throughput between hando�s while also allowing us to observe multiplehando�s during a single data transfer.We believe these four scenarios show a complete and fair picture of the problems introducedby host motion. We use the no-motion scenario as a base for comparison. The motion scenariowith overlapping cells represents the best hando� performance possible with our hardwareand software. It is realizable in a real network only if overlap regions are large enough and5

www.manaraa.com

hosts move slowly enough for hando� operations to complete while a moving host is still in theoverlap region. The scenario with zero rendezvous delay represents the minimum network-level interruption introduced by non-overlapping cell hando�s. It is realizable only if the MHdoes not have to wait for a beacon before it can communicate with the new MSS, for examplein a network where MSSs announce their presence by means of a continuous signal. Finally,the scenario with a 1-second rendezvous delay shows what happens as the length of network-level interruptions increases. It is a realistic scenario when a periodic beaconing scheme isused, since an MH may have to wait up to a full beaconing period before it receives a beaconfrom the new MSS.As shown in Figure 2, throughput degrades substantially in the presence of motion acrossnon-overlapping cells. In the overlapping cell scenario, throughput degrades only slightly, by6%. In the non-overlapping cell scenario with zero rendezvous delay, throughput drops by12% even though only 3 hando�s occur in the roughly 24-second lifetime of the connection.Throughput drops much further with a 1-second rendezvous delay, by 31% with 3 hando�sin roughly 29 seconds.In the rest of this section we study the causes of this performance degradation in increasingdetail. We concentrate on single hando�s to eliminate from our results any dependencies onthe parameters of the throughput test discussed above (4 Mbytes of data with hando�s every8 seconds). Our results will thus apply to all cell hando�s in each motion scenario.
0 10 20 30

Time (seconds)

0

1

2

3

4

Se
qu

en
ce

 n
um

be
r

(M
by

te
s)

Cell crossing

Figure 3: Behavior of TCP sequence number in response to cell boundary crossings3.2 Pauses in communicationFigure 3 shows how the TCP sequence number behaves over the life of a connection. In thisexample, the MH moves between non-overlapping cells with a 1-second rendezvous delay. Asshown, the sequence number ceases to advance for roughly 3 seconds after the �rst two cell6

www.manaraa.com

crossings, and for roughly 1 second after the last crossing. A 3-second pause is typical of a1-second rendezvous delay, while a 1-second pause is more typical of a 0-second rendezvousdelay. During these pauses, TCP transmits no new data and transport-level communicationcomes to a halt.
0 10 20 30

Time (seconds)

0

20

40

60

W
in

do
w

 s
iz

e
(K

by
te

s)

Cell crossing

Figure 4: Behavior of TCP congestion window in response to cell boundary crossingsThe e�ect is also visible in Figure 4, which graphs the TCP congestion window over thelife of the same connection. The congestion window is an upper bound on the transmissionwindow, which in turn controls how much unacknowledged data a TCP connection can havein transit over the network. As shown, the congestion window stops growing with every cellcrossing. Some time after the crossing, the window shrinks to its minimum value and eventu-ally begins to grow again. The intervals between when the window stops growing and whenit begins to grow again correspond to the 3-second and 1-second pauses in communicationnoted above.3.3 Packet lossesThe long pauses in communication are caused by TCP's response to packet losses. Lossesoccur due to routing inconsistencies during non-overlapping cell hando�s. Consider the routefrom the MH to the SH. When the MH leaves a cell without warning, its routing tablescontinue to point to the old MSS as the default gateway. The MH does not know it hasmoved and therefore does not change its routing tables until a beacon arrives from the newMSS. Until then, the MH continues to send packets destined for the SH directly to the oldMSS. These packets are lost because the MH can no longer reach the old MSS through thewireless interface.Inconsistencies persist longer with the route from the SH to the MH. The old MSS doesnot know that the MH has left the cell until an explicit noti�cation arrives from the newMSS, which cannot send the noti�cation before it receives a greeting from the MH. Until the7

www.manaraa.com

old MSS learns of the MH's motion, it continues to route packets directly to the MH. Thesepackets are also lost because the old MSS can no longer reach the MH. Any other parts ofthe network involved in the hando� must also wait for explicit noti�cation that the MH hasmoved before they can change their routing tables to point away from the old MSS to thenew MSS.
0 0.05 0.15 0.8 Time (seconds)

route
changes

route
changes

MH

1.0

timeout
Retransmission

arrives
Beacon

transmission

+
crossing

Cell

Packet losses

Last timed

Old MSS

Figure 5: Hando� latency and related packet losses with a 0-second rendezvous delayFigure 5 shows what happens during one hando� in the case of zero rendezvous delay.Although the beacon from the new MSS arrives concurrently with the cell crossing, the MH'srouting tables do not point to the new MSS until 0.05 seconds after the cell crossing. Similarly,the old MSS's routing tables do not point to the new MSS until 0.15 seconds after the cellcrossing. Although the system overhead implicit in these �gures can be reduced throughcareful implementation, hando� latency cannot be altogether eliminated because at least twopacket exchanges are needed to notify both the new MSS and the old MSS that the MH haschanged cells. Because these packets incur unavoidable propagation delays, there will alwaysbe a window of opportunity during which both data and acknowledgment packets can berouted to unreachable wireless transceivers.An active TCP connection thus loses up to a full transmission window's worth of pack-ets and related acknowledgments during each hando�. Once the transmission window �lls,communication stops until the retransmission timer expires. When a timeout occurs, TCPretransmits the earliest unacknowledged packet, doubles the retransmission interval, and re-sets the timer. If the hando� is not yet complete when the timeout occurs, the retransmittedpacket is also lost and TCP waits for yet another timeout before retransmitting. A singletimeout is typical of zero rendezvous delay, as shown on Figure 5. Two consecutive timeoutsare typical of a 1-second rendezvous delay, as shown on Figure 6.It is evident how waits for retransmission timeouts freeze transport-level communicationfor 0.8 seconds or more with each cell crossing across non-overlapping cells, and are respon-sible for a large part of the throughput losses reported earlier. In contrast, hando�s between8

www.manaraa.com

Time (seconds)

completes

transmission

timeout 1
timeout 2

Retransmission
HandoffRetransmission

1.0 2.0

2.80.8 1.0 1.150

arrives
Beacon

crossing
Cell

Packet losses

Last timedFigure 6: Hando� latency and related packet losses with a 1-second rendezvous delayoverlapping cells do not cause the same long pauses in communication because the imple-mentation of overlapping cells in our testbed insures that no packets are lost during thosehando�s. The slight throughput losses reported earlier for the overlapping cell scenario aredue only to encapsulation and forwarding delays during hando�s.3.4 Slow recoveryAs shown in Figure 4, the congestion window drops abruptly after a cell crossing when theretransmission timer goes o�, but returns only gradually to its previous level once transport-level communication resumes. TCP's slow-start algorithm [8] is responsible for this behavior.As acknowledgments reach the TCP transmitter, slow start �rst grows the congestion windowexponentially until it reaches a threshold, then grows it linearly. The threshold is set to onehalf of the window size at the time of the retransmission timeout. The slow start thresholdthus decays exponentially with consecutive timeouts.The slow recovery after each hando� contributes to the loss of throughput discussed earlier,but only moderately. Our measurements show that the algorithm throttles transmissions forapproximately 1 second after communication resumes. At that point the connection againreaches its maximum throughput (1.6 Mbit/second), and the congestion window ceases toa�ect performance.3.5 Unacceptable interactive responseInteractive delays are a concern in addition to throughput. Studies of human factors indi-cate that people perceive interactive response to be \bad" if it takes longer than 100 to 200milliseconds [11]. As discussed above and shown in Figures 3, 4, 5, and 6, transport-levelcommunication comes to a halt for 800 milliseconds or longer after non-overlapping cell cross-ings. Furthermore, these pauses grow exponentially with growing rendezvous delays due toTCP's exponential retransmission backo� policy. In interactive applications that use TCP9

www.manaraa.com

for reliable data transport, user inputs and their responses will be unable to travel betweenmobile hosts and remote servers during these pauses.Although users may not always interact with their computers while moving, there willcertainly be times when they will do so soon after stopping. Our results show that pauseswill persist from 650 milliseconds to several seconds after a host enters a new cell and thehando� completes. Motion will thus lead to unacceptable interactive response unless we solvethe problems presented in this section.4 Alleviating the e�ects of motionOur results demonstrate that we must improve the performance of reliable transport com-munication in mobile computing environments. Two approaches are possible: hiding motionfrom the transport level, and adapting the transport level to react better to motion.4.1 Smooth hando�sCellular networks should strive to provide smooth hando�s in order to eliminate packet lossesduring cell crossings and thus hide motion from the transport level. As we have shown withour testbed, one way to achieve this goal is to implement \make then break" hando�s and toengineer enough overlap between cells to insure that hando�s complete before an MH losescontact with the old MSS. However, there are compelling reasons to build networks with littleor no overlap between small cells:� They o�er high aggregate bandwidth because they can use the same portion of theelectromagnetic spectrum in nearby cells. Bandwidth is scarce in wireless networks.� They support low-powered mobile transceivers because signals need only reach shortdistances. Mobile computers have stringent power consumption requirements.� They provide accurate location information because cells are small and sharply de�ned.Location information adds important functionality to distributed systems.It is possible to provide smooth hando�s in spite of packet losses due to motion betweennon-overlapping cells. For example, MSSs could bu�er packets they have recently sent toMHs. When an MSS is noti�ed that an MH has moved out of the MSS's cell, the MSS cansend the bu�ered packets for that MH to the MSS now responsible for the MH. The new MSScan in turn forward the packets to the MH. This technique increases the memory requirementsof the MSSs, but may prove feasible because the amount of data that an MSS needs to bu�eris bounded by the maximum hando� latency between adjacent cells.However, it is unlikely that all cellular networks will provide perfectly smooth hando�sin the near future. It is therefore worthwhile to investigate transport-level techniques foralleviating the e�ects of packet losses during hando�s.10

www.manaraa.com

4.2 More accurate retransmission timersThe long pauses in communication presented in Section 3 are due partly to inaccurate re-transmission timers. TCP implementations historically have used coarse timers with a 300-to 500-millisecond resolution. For example, the 4.3BSD-Tahoe implementation in our testbeduses a 500-millisecond resolution timer. The resulting minimum timeout value is twice thetimer resolution, or 1 second (this 1-second value is evident in Figures 5 and 6). The retrans-mission timer is intended to track the round-trip delay experienced by a TCP connection, butactual round-trip delays are much smaller than 500 milliseconds. For example, connectionsin our testbed experience well under 1 millisecond of round-trip delay. It may appear thatchanging TCP implementations to use higher-resolution timers would result in more accurateround-trip time estimates and would thus reduce pauses in communication during cellularhando�s.However, more accurate timers will not solve the problems introduced by motion acrosswireless cell boundaries. A timer that successfully tracks the round-trip delay will lead totimeout values on the order of 1 millisecond or less. These small timeout values will resultin multiple timeouts while a hando� completes, which in turn will lead to the following threeproblems:� Multiple reductions of the slow-start threshold. The threshold decays exponentially withconsecutive timeouts and can quickly reach the minimum window size of one packet.When communication resumes after a hando�, connections will �nd themselves in thelinear region of window growth dictated by the slow start algorithm, and will takemany round-trip times before they reach maximum throughput. Our testbed avoidedthis problem because of its coarse timers.� Multiple backo�s of the retransmission timer. Backo�s grow exponentially with consec-utive timeouts and can quickly lead to the long pauses in communication we are tryingto avoid.� Multiple retransmissions before the routes become consistent. These futile retransmis-sions waste bandwidth in the slow wireless medium.In general, it is di�cult for a timer-based scheme to adapt to the abrupt changes in round-tripdelay introduced by cellular hando�s.4.3 Fast retransmissionsAn attractive end-to-end solution [10] to the problems presented in Section 3 is for the trans-port protocol to resume communication immediately after hando�s complete, without waitingfor a retransmission timeout. Modern TCP implementations, including the 4.3BSD-Tahoe im-plementation in our testbed, already perform similar fast retransmissions when a transmitterreceives triplicate acknowledgments from a remote receiver. When activated, the fast retrans-mission procedure immediately retransmits the earliest unacknowledged packet, drops thetransmission window, and initiates the slow-start algorithm. The rationale behind current11

www.manaraa.com

fast retransmissions is that triplicate acknowledgments clearly indicate that packet loss hasoccurred, and thus there is no need to wait for a timeout before retransmitting.We made modest changes to the TCP and Mobile IP software in our testbed to invokethe existing fast retransmission procedure as soon as routes become consistent following a cellcrossing. First, the Mobile IP software on the MH signals the TCP software on the MH whena greeting acknowledgment arrives from the new MSS. Second, the TCP transmitter on theMH invokes the fast retransmission procedure when it receives such a signal. The signal isdelivered through shared memory between TCP and IP software in the same host.Figure 7 shows the measured e�ect of fast retransmissions after a non-overlapping cellhando� with a 0-second rendezvous delay. As shown, fast retransmissions cause a TCPconnection to resume communication 50 milliseconds after the hando� completes. In contrast,the retransmission timeout would not have occurred until 650 milliseconds after the hando�completed.
Cell

0.20 0.8 Time (seconds)

1.00

retransmission
Fast

timeout
Retransmission

arrives
Beacon

+
crossing

transmission
Last timed

completes
Handoff

Figure 7: Fast retransmission after a hando� with a 0-second rendezvous delayAn additional communication step is necessary to inform the TCP software on the SHof the events occurring at the other end of the connection. First, the Mobile IP software onthe MH signals the TCP software on the MH of the completion of the hando�, as describedabove. Second, the TCP software on the MH forwards the signal over the network to theSH. Third, the TCP software on the SH invokes the fast retransmission procedure whenit receives such a signal. The signal travels from the MH to the SH through normal IProutes and can take either of two forms: It can be a specially marked TCP acknowledgmentpacket containing the sequence number of the last data packet successfully received by theMH, or it can be three identical but ordinary TCP acknowledgment packets. The triplicateacknowledgment approach consumes more resources but does not require modi�cations toTCP implementations on stationary hosts.Figure 8 shows the measured e�ect of fast retransmissions after a non-overlapping cellhando� with a 1-second rendezvous delay. As shown, fast retransmissions again causes a TCP12

www.manaraa.com

connection to resume communication 50 milliseconds seconds after the hando� completes. Incontrast, the retransmission timeout would not have occurred until 1,650 milliseconds afterthe hando� completed.
1.00 2.00

timeout 1
Retransmission

retransmission
Fast

timeout 2
RetransmissionHandoff

crossing
Cell

arrives
Beacon

transmission
Last timed

0.8 1.0 1.20 2.8 Time (seconds)

completes

Figure 8: Fast retransmission after a hando� with a 1-second rendezvous delayThe fast retransmission approach has three desirable features:� It requires only minimal changes to software on the end hosts. It changes Mobile IP onlyto propagate an end-of-hando� signal one layer up in the protocol hierarchy. It changesTCP only to invoke the existing fast retransmission procedure when the end-of-hando�signal arrives. It need not change TCP on stationary hosts if triplicate acknowledgmentsare used.� It does not depend on special support from the network, including mobility supportstations or other intermediate routers. It therefore does not depend on any one mobilenetworking environment and will work over an internetwork.� It follows established congestion avoidance policies by closing the transmission windowand using the slow-start algorithm after the initial retransmission. It thus avoids con-gesting the cell the MH has just entered. Gently probing the congestion state of a newroute, such as the route to a new cell, is one of the principal motivations behind theslow start algorithm.It is important to note that there is no need to initiate fast retransmissions in networksthat guarantee smooth hando�s, that is, in networks that never lose packets during hando�s.In that case, the MH software involved in the hando� need not signal the transport levelwhen hando�s complete. The fast retransmission scheme therefore coexists with any hand-o� scheme. The software that implements the scheme resides in the transport level and isexercised only when needed. 13

www.manaraa.com

4.4 Improvements in latencyFigure 9 shows the pauses in transport-level communication caused by motion across non-overlapping cell boundaries, together with the improvements gained by applying the fastretransmission procedure. As shown, when the transmitter resides on the MH, fast retrans-missions reduce these pauses from 0.8 to 0.2 seconds for a 0-second rendezvous delay, andfrom 2.8 to 1.2 seconds for a 1-second rendezvous delay.
1.2

2.8

100 %

25 %

43 %

100 %

Pauses in
communication

(seconds)

rendezvous delay
0 - second

rendezvous delay
1 - second

0.8

0.2

2.6

1.3
50 %

100 %

50 %

100 %

Pauses in
communication

(seconds)

0 - second
rendezvous delay

1 - second
rendezvous delay

0.6

0.3(a) Transmitter on the MH (b) Transmitter on the SHFigure 9: Improvements in latency due to fast retransmissionsFigure 9 also shows our results for the case when the TCP transmitter resides on the SH,where pauses drop to from 0.6 to 0.3 seconds for 0-second rendezvous delays, and from 2.6 to1.3 seconds for 1-second rendezvous delays. Pauses before the improvements are shorter whenthe transmitter is on the SH (e.g., 0.6 vs. 0.8 seconds for 0-second rendezvous delays) becausedata packets incur added propagation delay before they are lost. E�ectively, lost packets aresent earlier before the cell crossing, and thus retransmission timeouts occur earlier after thecrossing. Pauses after the improvements are longer when the transmitter is on the SH (e.g.,0.3 vs. 0.2 seconds for 0-second rendezvous delays) because the fast retransmission mustwait for an acknowledgment packet to travel between the MH and the SH after the hando�completes.The fast retransmission scheme thus succeeds in reducing interactive delays to 200-300milliseconds beyond the rendezvous. Reducing hando� latency through careful implementa-tion would further reduce this remaining delay. The Mobile IP software in our testbed isan early example of support for mobile networking and was not written with fast hando�sin mind. For example, it incurs substantial system overhead by employing application-levelprocesses to process beacons, change routes, and perform other hando�-related functions. Amore e�cient implementation of hando�s combined with fast retransmissions should in allcases bring pauses in communication to 100 milliseconds or less after the rendezvous. If users14

www.manaraa.com

do not attempt to interact with their mobile computers until they stop moving across cellboundaries, interactive delays will then drop to acceptable levels.
100 %

1600

(Kbit / sec)

Average

1510

No 0 - second 1 - second

1490

1380
93 %

throughput

88 %

69 %

86 %

94 %

handoffs rendezvous delay rendezvous delay

Non-overlapping cells

Overlapping
cellsFigure 10: Improvements in throughput due to fast retransmissions4.5 Improvements in throughputWe also measured signi�cant improvements in throughput due to the fast retransmissionscheme. As shown in Figure 10 for the test described in Section 3.1, throughput improves from1400 to 1490 Kbit/second for 0-second rendezvous delays, and from 1100 to 1380 Kbit/secondfor 1-second rendezvous delays. Some throughput losses remain because a transport-levelscheme like fast retransmissions does not reduce network-level delays and packet losses, andbecause the slow-start algorithm throttles connections for some time after transport-levelcommunication resumes.5 Wireless transmission errorsEven in the absence of motion, the WaveLAN network in our testbed su�ers from relativelyfrequent packet losses due to physical transmission errors. A separate measurement studyfound that WaveLAN exhibited excellent packet capture rates (over 99%) in an indoor envi-ronment [6]. However, in our environment, packet loss frequency varies widely even acrossshort distances and depends on such factors as the positions of antennas in a room. Suchproblems are common in wireless communication because wireless media are vulnerable toambient noise and multipath interference. Commonly cited bit error rates for radio andinfrared links are 10�6 or worse, compared to 10�12 or better for �ber optic links.15

www.manaraa.com

Wireless transmission errors will also trigger the transport-level problems described inSection 3. One possible solution is for the link-layer protocol that controls wireless links toretransmit packets lost on those links and thus hide the losses from higher layers. However,recent research shows that, under certain packet loss conditions, competing retransmissionstrategies in the link and transport layers can interact to reduce end-to-end throughput whileincreasing link utilization [5]. Alternative techniques such as selective retransmissions at thetransport layer may prove more e�ective than link-layer retransmissions.We wanted to isolate the e�ects of motion across cell boundaries from the e�ects ofwireless transmission errors. We solved the problem by positioning the WaveLAN antennasphysically close together in an area relatively free from ambient radiation and multipathproblems. Packet losses in the absence of cell crossings then dropped to negligible levels.We also repeated all our hando� experiments using a wired network to emulate a wirelessnetwork; we substituted a second Ethernet for the WaveLAN in our testbed and found nofundamental di�erences in our results. We did not treat transmission errors any further inorder to concentrate on hando�s. Nevertheless, the impact of wireless transmission errors onreliable transport protocols warrants further study.6 ConclusionsMobility changes important assumptions on which existing systems operate. In particular,networks that include wireless links and mobile hosts su�er from delays and packet lossesthat are unrelated to congestion. Current reliable transport protocols react to these delaysand losses by abruptly slowing their transmissions, a response that further degrades theperformance of active connections. We have identi�ed the factors that contribute to thisperformance degradation and have quanti�ed their e�ects in detail. We have shown howwaits for retransmission timeouts cause pauses in communication at least 650 millisecondslonger than the underlying network-level interruption. These pauses are readily noticed byinteractive users and signi�cantly reduce throughput.We have also described a fast retransmission scheme that can reduce the pauses in com-munication to 50 milliseconds past the moment when transport-level communication resumes.Fast retransmissions thus reduce interactive delays to acceptable levels and regain much ofthe lost throughput. The fast retransmission approach is attractive because it calls for onlyminimal changes to end systems, relies on no special support from the underlying network orintermediate routers, and follows established congestion avoidance procedures. The approachis thus applicable to a large and varied internetwork like the Internet.Our work makes clear the need for reliable transport protocols to di�erentiate betweenmotion-related and congestion-related packet losses. Our results can be used to adapt TCPto mobile computing environments. They also apply to other reliable transport protocols thatmust cope with both mobility and congestion.16

www.manaraa.com

AcknowledgmentsDan Duchamp and John Ioannidis provided the Mach 2.5 version of the Mobile IP software.Chuck Lewis helped to set up and maintain the testbed. Greg Minshall provided usefulcomments on an earlier draft of this paper.References[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young.Mach: A new kernel foundation for UNIX development. Proc. of the USENIX 1986Summer Conference, July 1986.[2] B. R. Badrinath, A. Bakre, T. Imielinski, and R. Marantz. Handling mobile clients: Acase for indirect interaction. Proc. of IEEE WWOS-IV, October 1993.[3] D. Comer. Internetworking with TCP/IP. Prentice Hall, Englewood Cli�s, New Jersey,1988.[4] S. Deering and M. Weiser. Private communication. Xerox PARC, October 1993.[5] A. DeSimone, M. C. Chuah, and O. C. Yue. Throughput performance of transport-layerprotocols over wireless LANs. In Proc. of Globecom '93, December 1993.[6] D. Duchamp and N. F. Reynolds. Measured performance of a wireless LAN. In Proc. ofthe 17th IEEE Conf. on Local Computer Networks, September 1992.[7] J. Ioannidis and G. Q. Maquire Jr. The design and implementation of a mobile internet-working architecture. Proc. of the USENIX 1993 Winter Conference, January 1993.[8] V. Jacobson. Congestion avoidance and control. Proc. of ACM SIGCOMM '88, August1988.[9] A. Myles and D. Skellern. Comparison of mobile host protocols for IP. Journal ofInternetworking Research and Experience, 4(4), December 1993.[10] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. Proc.of the 2nd International Conference on Distributed Computing Systems, April 1981.[11] B. Shneiderman. Designing the User Interface. Addison-Wesley, 1987.
17

